
Complexity Analysis
Dr Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Why do analysis?

• Which algorithm is going to be faster?

• How many items can I fit in memory using this data
structure?

Types of Complexity
• Execution time complexity

• wall clock seconds - “how long does the function
take in seconds?”

• count of operations - “how many code instructions?”

• computer clock tics - “and if we add up the actual
CPU cost of all the instructions?”

• count of investigations - “how many things do we
need to look at to e.g. find our item?”

Types of Complexity

• Space complexity

• bytes used per item

• amount of storage actually filled vs wasted
space

Look at Several Cases
• Best case

• Worst case

• Average case

• How does it grow with different sizes n

• number of “items” in data

• items can be bytes / nodes / records / array
indices / clients connected etc.

Counting Instructions

• Approx CPU time cost of each operation  
+ - * / % =

• Function calls, pointer dereference, sqrt() etc etc.

• Problems with this?

• Function T(n)

Timers
• Problem - you have to actually implement the programs

• Depends on hardware tested on

• Hard to make a general comparison between algorithms

• Very commonly used in graphics/games/networks

• Latency (usually in ms)

• Frequency (Hz or frames per second)

• Worst/best/average times

Bachmann-Landau Notation
aka “asymptotic notation”

• “What type of growth function is this?”

• how does cost grow as size n increases?

• Don’t usually care about exact details

• asymptotes are curves representing limits of a function

• function never breaks upper or lower asymptote

• .: upper and lower bounds

• .: worst and best case approximations

• we can also plot an average fit

• all useful generalisations to describe our complexity

• Approximate “order” function O(n)

• Called “Big O” (oh) notation - very commonly used.

• Big O is an upper bound -> cost in the worst case

• i.e. if we don’t find out item until we’ve looked
through all the others

Fit Approximation
• Big O is a fit approximation

• Collect some data on costs

• “What type of function plot does this resemble?”

• Choose closest match

• e.g. f(n) = n² + n + 4

• usually drop the constants and lower order components - not a
significant % of cost at large sizes of n.

• can use k for constant if important

• our algorithm is therefore order O(n²) - all quadratics

Which growth rate fits?

abandon all hope! O(n!)

src: http://bigocheatsheet.com
neat website - has a table / poster of
complexities for all the fund. DS & A

http://bigocheatsheet.com

Other Bachmann-Landau
Notations

• O(n) - worst case - Big O - comparing functions

• Θ(n) - average case - Big Theta

• Ω(n) - best case - Big Omega

• Cormen et. al. are very specific about these

• Ties closely to mathematical field

• Often see O(n) notation used for all cases

Caveat I
• It only makes sense to compare complexity of

same type

• search algorithm vs search algorithm

• data structure space vs data structure space

• sorting algorithm vs sorting algorithm

• n and O(n) have to measure ~the same thing

An Easy Way to Estimate O~
?

// update all the boids  
for (int i = 0; i < n; i++) {  
 // move each boid away from all the other boids 
 for (int j = 0; j < n; j++) {  
 if (i == j) {  
 continue;  
 }  
 Position their_pos = boids[j].position;  
 move_boid_away_from(i, their_pos);  
 }  
}

implementing “Boids” algorithm from Craig Reynolds’
“Flocks, herds and schools: A distributed behavioral

model.". SIGGRAPH '87

https://en.wikipedia.org/wiki/SIGGRAPH

Binary Search Algorithm
• E.g. looking for a name in a phonebook

• Assumption - search space is pre-sorted array/list.

1. Bisect search space into 2 lists (e.g. store index to start and
middle)

2. Look up item at middle point

3. If desired value found -> halt

4. If mid item > desired value -> use left list, go to (2)

5. Else use right list, go to (2)

Binary Search
• A phonebook has 450,000 entries

• For searching time complexity T(n) we count if()
statements - investigations

• What is T(n)?

• Best case?

• Worst case?

• Average case?

Binary Search - Worst Case
#investigations 0 1 2 … n
search space

remaining sz sz / 2 sz / 4 … sz / (2^n)

• what would a plot look like -> what Big O is this?  

• best case? 

• average case?
• could estimate general trend we observe in

table.
• or plot large number of real T(0)…T(1)… values

and use closest plot fit through data points.

Binary Search

• Worst case time - O(log n)

• Best case time - O(1)

• Average case time - O(log n)

• How does this compare to linear search (search
every item from first to last until found)?

Linear Search
• Worst case time - O(n)

• Best case time - O(1)

• Average case time - O(n)

• Binary search is extremely fast - has fastest best, worst,
and average times or common searches in order notation.

• Binary search is .: faster but requires a sorted array.

• Or is it…

Linear Search
• Does not require items to be sorted

• Can be done on a linked list

• Cache speed advantages for linear operations on arrays ~10-20x
speed up (if set up right)

• Do not under-estimate the power of brute force algorithms

• If array is short linear search beats binary search

• Is phonebook with 450,000 entries a small size of n? - try it!

• make a trivial program with a boring array of integers this big
and put a timer for binary and linear search

Caveat II
• Don’t get hung up on growth difference for small sizes

of n

• Most problems are very small sizes of n

• Even terrible-looking curves may be irrelevant

• This is why just looping over arrays is usually the best
answer (and least bother)

• Looping over arrays also uses secret weapons at
hardware level

log N sqrt(N) N N log N N^(3/2) N^2

3 3 10 30 30 100

36 10 100 600 1,000 10,000

81 31 1,000 9,000 31,000 1,000,000

169 100 10,000 130,000 1,000,000 100,000,000

256 316 100,000 1,600,000 31,600,000 ten billion

361 1,000 1,000,000 19,000,000 one billion one trillion

Adapted from R. Sedgewick, Algorithms in C++, 1990

Summary
• Mathematical analysis of algorithm or code

• e.g. binary search space = sz + sz/2 + sz/4…

• Empirical analysis (actually measure times etc.)

• sensitive to hardware, code quality, noise, temperature

• Math vs empirical can produce wildly differing results

• Beware comparing implementations that may be more or
less optimised (common problem in CS)

